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Abstract

This article deals with a design method for optimizing heat spreaders dedicated to electronic board cooling. The modeling is based on
the thermal quadrupole method which is an analytical exact and rapid method that can be implemented for suitable geometries. Under some
conditions, an optimal thickness can be found for the spreader (or the heat sink base). It correspond to a minimization of the average or the
maximal temperature of the heat sources. This optimal thickness is given in an non-dimensional form by an abacus which can be used in a
quantitative way to design heat spreaders or, in a more qualitative way, to assess the function and the performance of the spreader. Locatior
of the sources on the heat spreader as well as the shape of the spreader are also optimized. Finally, the case of a pyramidal multi-layer he:
spreader is considered in order to test the efficiency of the quadrupole method as a tool for modeling conductive heat transfer for optimization
applications.

0 2003 Elsevier SAS. All rights reserved.
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1. Introduction ture. For example Degiovanni et al. [3,7] suggest, for thick
spreaders:
Cooling electronic devices [1,2] require the use of heat 8 L, L,\375
ion i i Ri=—5>—(1-1288—+0.288 — 3
spreaders whose function is to allow the spreading of the R. 3n3/2ALe< To + (Lo> > Q)

flux lines in the 3D space and to increase the exchange area
with the coolant. It is possible to model a spreader of the Under the same conditions, Negus et al. [4] propose:
type shown in Fig. 1 by a sum of three thermal resistances 0.475—0.62L,/Lo + 0.13(L./Lo)?

(R4, R.andR;) characterizing the non-disturbed spreader, Re = (4)

AL
the constriction of the flux lines and the convective transfer These correlations ha ee been determined using cvlindrical
with the coolant respectively: S lons hav ined using cylinari

geometries but stay also valid in the case where the source

d the spreader have nearly square bases. These resistances

Ri=R;+R.+R 1 andthe :

! d ¢ f @ are defined with respect to the average temperature of the

Ry = L’ R;=—— (inthe case of Fig. 1) (2) excited surface, considering a uniform excitation flux. This
AL(Z) ‘ hL(Z) type of correlation is only valid for a thick heat spreader,

the total resistance being defined with respect to a tem_whose thickness is of the same order of magnitude as its lat-
perature difference between the average temperature of thee ral lengths because they do not take into account the ex-

L hange with th lant. Th nstriction resistan r
source and the temperature of the coolant (which is set hereC ange with the coolant. These constriction resistances are

. . . not intrinsic to the spreader, they also depend on the convec-
at 0°C). The calculation of the constriction resistanke P y P

can be done using different correlations found in the litera- tive transfer, or more globally on the boundary conditions.
using di 1ons found ! In fact, it is observed that the lower the convective transfer,

the more significant the spreading of the flux lines.
* Corresponding author. In practice, spreaders are generally not thick enough
E-mail address: gmaranza@ensem.inpl-nancy.fr (G. Maranzana). for considering constriction resistances independent of the
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Nomenclature
B, Biot number relative to the spreader thickness T temperature
(Be)opt optimal Biot number relative to the spreader Thp temperature without spreader
thickness xp, yp location of thep-th source
Br.  Biot number relative to the source size oy x-eigenvalue of order
Bro  Biot number relative to the spreader lateral B y-eigenvalue of orden
dimensions Yam — =+of+BL
e thickness of the spreader On.m harmon!c of temperatgre, of order, m)
h heat transfer coefficient ¢n,m harmonic of flux denS|ty, of orde(n, m)
L? source length in the-direction A conductivity of the spreader
L) source length in the-direction 2,% functions
Ly spreader lengthedirection) 10 flux density dissipated by the source
Ly spreader lengthy¢direction) Subscripts or superscripts
R, constriction resistance p relative to source number
Ry non-disturbed spreader resistance max relative to the maximal temperature
Ry convective heat transfer resistance ave relative to the average temperature
R; total resistance opt optimal value

boundary conditions, so Yovanovich and Antonetti [5] have 400 Wm~1.K~1, Lo=100 mm,L, =20 mm). Degiovan-

established an abacus giving the constriction resistance fomi’s and Negus’ correlation give the same results which are

a spreader of such a thickness with an imposed temperaturevalid for this particular example where the thickness is larger

on the exchange surface. Song et al. [6] propose a correlatiorthan the half of the lateral length of the spreader. Song’s cor-

that integrates the convective coefficient and the thickness ofrelation is valid on the whole thickness domain within a cer-

the spreader as well: tain accuracy. We can already remark that an optimal thick-
(1— Lo/Lo)%? ness that minimizes the total thermal resistance exists.

R. This article displays a methodology for calculating the

2AL, optimal dimensions of a spreader. It is aimed at answer-
(/) (@¥2/Lo+1/Le) +tanh(7%2/Lo + 1/Le)e) ing the following question: knowing the dimensions of
1+ #(w%2/Lo+ 1/L.)tanh(w3/2/Lo + 1/L.)e) the sources, the dissipated power, the conductivity of the
(5) spreader material, as well as the convection coefficient, what
According to its authors, this correlation is valid in almost g5
all the common applications in electronics with a 10% ¢
maximum error. One can notice that resistamge is a 018F
decreasing funct_ion of the thickness of the spread(_er. _ & Degiovanni
The total resistance of the spreader shown in Fig. 1 0175¢ & Negus
is plotted versus its shape ratio for the different correla- T @ 90”%-L99
tions as well as the exact model defined further in this .~ 0o s 2
article (Eqg. (21)) in Fig. 2(h = 1000 Wm—2.K™1, A = oaesk  © 8 2
o 2
016 &
o} a 1
0185} ¢ s 2
o & @ ﬁ ﬁ
0.15 o
Qﬁ
0.145 o
e I Conductivity ; A
014 1 1 1 1 1
0 02 04 08 08 1
b
ijn’tlfd: 0 Fig. 2. Total thermal resistance of the system as a function of the thickness

of the spreader, using different correlations for the constriction resistance
Fig. 1. Single layer square base spreader. and an exact method.
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are the dimensions of the spreader and the locations of the The thermal quadrupole method [7] (based on integral

sources that minimize their temperatures? transforms and on the method of separation of variables)
As shown in the preceding example, an optimum exists yields the analytical expression of temperatdteof the

for the thickness of the spreader. But an optimum does notupper face of the spreader as a function of the imposed flux

exist for its base surface area because the larger its valuedensity.

the larger the exchange surface and the more important the For steady state conditions, the Fourier-cosine transform

spreading of the flux lines. So, an extra criterion should be of the temperaturé is written:

introduced, to determine this area. It could be the maximal

1
allowable temperature of the source. f0.0 = (; + E>¢O’0 (6)
0. - 11+ (h/Aynm)tanhy, me)
2. Caseof asinglelayer heat spreader A O/ 1) @MY me) "
for (n,m) # (0, 0) (7)

2.1. General case
where6, ,, and ¢, ,, are the Fourier-cosine transforms of

Let us consider a single layer heat spreader whose aimtemperaturd” and of the flux density on the upper face of
is the cooling of a set oP sources as shown in Fig. 3. Its  the spreadefz = e):
lateral lengths are callet andLé, its thickness and its
conductivityA. The lower face of the spreader is submitted L§ Ly
to a uniform con_vective heat transfer coefficiégnand the Opm = /T(x, y, z = €) CO 0ty x) COK By y) dy dx
lateral faces are insulated. Each source numpbef lengths
L, andL% in thex andy-directions respectively dissipates
a known flux density,, (x, y) on its heating surface.

Any increase in the thickness of the spreader yields a ¢, ,, ://(p(x’ v,z =-¢) coSa,x)cogB,y)dydx  (8)
better spreading of the flux lines (a decreaseRpf but
also leads to a simultaneous increase in the non-disturbed
resistance of the heat spread®; = e/AL3LY). So, an with
optimal thickness that minimizes the temperature of the ~ nm _mm _\/ﬁ
sources, clearly exists. As in the previous single source On = Ly Bm = Lé’ Yam =+ + By
case, no optimum on the lateral dimensions of the spreader . .
(L, L) exists. However, if the base surface alq”;\x LY So, the spectrum of .the_lmposed flux density on the upper
is fixed, an optimum exists for the shape of the spreader, face of the spreader is given by:
that is to say for theLg/L’(g ratio. In this latter case one

00
1y
Lg Ly

00

9)

aptLy yptLy

or several optima can be found for the locations of the P

sources([x,, y,1). Gnm = Z / @p(x,y) coga,x) COY By y) dy dx
Thus, the aim of this section is to optimize the thickness r=1 y, Vp

of the spreadexe), its shape(Lé/L’c‘,) and the locations (10)

of the sources([x,, y,1) as a function of some control

parameters which are the spreader base Surface(ageg As a result, the analytical value of the temperature spectrum

LY), the dissipated flux densitig®, (x, y)), the convective  onthe upper face of the spreader can be calculated. Knowing

heat transfer coefficiertk), and the conductivityX) of the this analytical spectrum, the real value of temperature can

material the spreader is made out of. be found using either a fast Fourier inverse transform or
keeping the analytical character of the method:

f0.0 2 N M
TGy, z=e)=—5+—52 > 2—8.0—50m
L)(“)L0 L’(SL0 =0 m=0

X coqay,x) Coiﬂmy)en,m (11)

where N and M are the truncation orders, in the and
y-directions of the Fourier series (chosen according to the
spatial resolution desired [9]), alddhe Kronecker symbol:

8, j=1L1ifi=jands;; =0ifi # j.

If we make the assumption that the sources are isothermal
in the thickness direction, two natural objective functions
can be introduced: the maximum of the average temperatures
Fig. 3. Single layer spreader: general case. of the sources and the maximum local temperature:
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1 Ly yp+Ly The objective function is the average temperature of the
Tave= maX( 3 / / T(x,y,e)dx dy) source
P \LyLyp FAEA Egs. (6), (7), (11) and (14)—(16) yield:
Of Tinax = Max(T'(x. y. ©)) (12) pL? <e . 1) L ¢Le i % ave
’ ae= — 5 \ 7~ T ay,
We choose here to keep the analytical character of the Ly \A h A =0 m=0 m
method in order to get an analytical expression for the 20 Vn.m/ h + tant(2y, me)
e . ) . . X . - (17)
objective function and for its gradient, which allows the use 1+ (20 ynm/ h) @270 me)
of an efficient minimization method. , | ’
with
2.2. Particular cases a®e(L,/Lo)
The aim of this section is to allow a functional analysisof Lo 2L2/L2(1— (84,0 + 80,m) + 81,080.m)
the heat spreader by considering some basic examples. "~ 3L, n2m2w2/n2 + m2
. . . Lo\ . L,
2.2.1. Design of a heat spreader for a single source x sin’ n?TL— sir? m7tL—
Here, we introduce a procedure for an optimal design 0 0
of a heat spreader used to cool a square base heat source _,_(50!'" — 8n.0%0.m) SinZ(,mE)
(L} = L, = L,) that dissipates a uniform heat flux (case n3 Lo
of Fig. 1). The optimal location of the source is of course (61,0 — 6n,000,m) 2 L, 18
the center of the spreader. According to the symmetry, only + 3 sim{mr T, (18)

the quarter of the structure requires to be modeled and
the optimal shape of the spreader being square the optimalRemark. The equivalent total thermal resistance of the

length ratior = LY /LY is equal to unity(Lg = Ly = Lo). system is:
The size of the sourcé., the uniform dissipated fluy, Tave
the convective transfer coefficiehtand the conductivity of R, =—  (Tfid = 0) (19)

2
the spreadex are assumed to be known. In this problem the . oL . _

optimization concerns only one variable, the thickness of the So, if the resistances of the non-disturbed spreader and of
spreadere), the adjustment parameter being the area of the the convective transfer are subtracted from the constriction
lower face(Lo). Let us calculate first the objective function. resistance, the following result is obtained:

The first step is to calculate the flux density spectrum 1 e
imposed on the upper face of the spreader using Eq. (10): Rc =R — W2 L2 (20)
0 0
Le/2 Lo/ . .
Comparing Egs. (17), (18) and (20) yields:
Oum =@ / / coY 20, x) 028, y) dy dx (13) o e
1
0 0 ave
Re(h, A, Lo, Lo) = a
since only the quarter of the structure is modeldd, énd ‘ ‘ AL nX:(:, mzzo o
L. are replaced by.o/2 andL./2 here.) So, 2).Yn.m/ h + tanh2y, me) 21)
X
boo— (& )2 14) 1+ (2hynm/ h) tanh2yn me)
00=¢{ which is the exact analytical expression of the constriction
L. sin(B,L.) resistance (based on the average temperature). Its approxi-
¢(n?g"l) = 907 2Bm mation is Song’s correlation (5). This resistance always de-
- L. sin(, L) pends on the convective heat transfer coefficient, which con-
¢ n0 = <p?° % firms that the constriction resistance is not an intrinsic prop-
(n=21) ] “n ] erty of the spreader since it depends on the boundary condi-
3@ Le) SIN(BinLe) (15) tions (k). When the thickness of the spreader becomes large
(nm>1) 20y 2Bm enough when compared with its lateral lengths (Degiovan-

The two objective functions (12) can be considered (min- ni's [3] and Negus’ [4] assumption), the ta@y,, ,¢) terms
imization of the average or of the maximum local source (in (21)) go to unity, and the constriction resistaritedoes

temperature): not depend on the convective coefficient anymore:
L./2 L./2 1 o0 0 L
_ ave | ~e
Tovem 2 Ty, eydyde or Re(h Le. Lo) = 77 > Za,,,nl(L()) (22)
Lz n=0 m=0
o 0 In order to provide a more general character to this study,
Tmax= X.;QéLlf/z(T(x, y.e)) (16)  the objective function can be given a non-dimensional form.
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The aim of the spreader is to reduce the temperature with .
respect to a reference configuration where heat transfer is-
one-dimensional. So the maximum temperature the sourcez

can reach corresponds to a cooling without spreader: E'E']g
. 8. —
TlD = Z (23) 15L
The objective function is normalized with this quantity: a)
Tave 1
The= 7o (24)
1D

The non-dimensional parameters of the optimization
problems are introduced in (17), (18), (23), (24) with:

e Bro=hLo/(2)): the Biot number relative to the lateral
lengths of the spreader.

e B, =he/(2)): the Biot number relative to the thickness
of the spreader.

e Br.=hL./(21): the Biot number relative to size of the =

source. v

hi

1
So the objective function depends on three parameterse™
and can be written under a functional form:

Lo
T;\,ez -Qave(L—7 B, Be) (25) b)

e

Using a symbolic calculus software of the Maple® type,
the analytical value of the gradient of the objective function
(aT5,6/9B.) can be determined and an efficient minimiza-
tion method can be implemented to calculate the optimal
Biot number relative to thicknessB. )opt for different val-
ues ofB;, andLg/L,.

The results are presented under the form of an abacus

25

05

25

2+

15

25

02

04

06 08 1
log( Ly/L)

i

02

04

06 0.8 1
log L, /L)

allowing the optimal choice of the thickness of the spreader—

see Fig 4(a)_ This abacus can be represented by a functior{:ig' 4. (a) Optimal non-dimensional thicknegse/1) that minimizes the

Yave
08ave( Lo
——| —, B, (B, =0 26
3B, <Le Les ( e)opt) (26)
or
Lo
(Be)opt= l1’ave<L—, BLe) (27)
e

The average non-dimensional temperature for this opti-
mal thickness can also be calculated to allow the choice of
the lateral lengths of the spreader to get an optimum for the

spreader dimensions: see Fig. 4(b). This abacus can be rep-

resented by a functiof?oh:
hTom <L0
- Qave -

@ Le
where2aveis defined by Eq. (25).

Lo
By, (Be)opt) = Qg\%(L_’ BLe) (28)
e

average temperature of the source as a function of the non-dimensional
length of the sourcghL./A) and of the length ratia(Lg/L.): func-

tion Yave (b) Non-dimensional average temperature for an optimal
non-dimensional thickness: functi O\',)é

Interpretations. Even if the underlying interpretations are
related to the particular case of the cooling of a single source
by a single-layer spreader, they can be extended to more
general cases in a qualitative way.

e The non-dimensional optimal thickness of a spreader is
an increasing function of its non-dimensional lateral lengths,
see Fig. 4(a) (progression along a horizontal liBg, beeing
kept constant). However this function reaches a plateau,
where an increase of the spreader lateral lengths has a
low impact on the source temperature (see Fig. 4(b)). This
plateau is reached for low spreader dimensions if the Biot
number relative to the size of the sourcg®,, = hL./2))

So, abacus 4(b) yield the lateral lengths of the spreader ass |arge. As a consequence, there exists a lateral length of

a function of the maximum allowable average temperature
while abacus 4(a) yield the corresponding optimal thickness.

the spreader, or exchange surface, that is not interesting to
exceed.
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. . . 2 T T T T T T
e For a fixed value of thd.q/L. ratio, an increase of

Biot numberB;. (or Brp) leads first to an increase of the o
optimal thicknesg B.)opt Which correspond to a spreading :
of the flux lines. This increase ifB.)opt is followed then

by a decrease until it reaches a zero value (see Fig. 4(a),
progression along a vertical line). This behavior is explained

now. The optimal thickness can not increase indefinitely

because the resistance of the non-disturbed spreRger

a) 1t

would become too important. This optimal thickness being
limited, the larger the Biot number8;, (or Brg), the
more one-dimensional the heat transfer, particularly at the
center of the source. At that point it can be said that
heat transfer becomecally one-dimensional. According to

08

06

04

02

this, a spreader is not required in this type of locally one-

dimensional situation. 0.2 04 08 log(L IDLB) 1 12
The non-dimensional optimal thickness of a heat spreader ve

is not a strictly increasing function of the non-dimensional

size of the source; above a given Biot number (relative to the 2

size of the source) it is better to decrease the thickness ofthe gl

spreader than to increase it. If the exchafigds very good, i .

the optimal thickness may be equal to zero, so it is better not ' a1

to use any spreader. 14+
e For all cases, the optimal Biot number relative to the

thickness is lower than unity, so it would be a nonsense

to design a spreader whose Biot numige¢ /1) would be by 1t o 0.3

higher than one. 05 / 0.8
o f —

The objective function is the maximal temperature of the
source n_q
This type of objective function is less used than the previ-

ous one because its value can not be experimentally obtained
by an electric measurement. Nevertheless, it corresponds to
the maximal temperature (hot point) which is responsible for

[ S—— 0.3
02r — 0.2
/ L *””. —

0

il 0e 1

log(L,L,)

components break down.

Tmax= | max (T(x,y,z=¢)) =

since temperature is maximal at the center of the source, thaf
is to say at £ =0, y = 0) when only one quarter of the

structure is modelled.

The constriction resistance, based on the maximal tem-

perature becomes:

1 oo oo

T(0,0,e)

2\ Yn,m/ h +tanh(2y, me)

(29)

Fig. 5. (a) Optimal non-dimensional thicknegse/1) that minimizes the
maximum temperature of the source as a function of the non-dimensional
length of the sourcghL./A) and of the length ratia(Lg/L.): func-

ion Ymax. (b) Non-dimensional maximum temperature for an optimal
non-dimensional thickness: functlo’mr%rgx.

In the same way as previously, the non-dimensional objec-
tive function is written as a function of three variables:

Lo
Tnﬂ;ax_ QmaX(L_v B£’1 BL(:’) (32)
e

— qmax 30
¢ AL 1=0 m=0 " 1+ (2hynm/ h) a2y, me) GO The corresponding abacus are drawn in Fig. 5. Above a Biot
with number relative to the size of the sourcB.{) equal to
1.3 no optimal thickness exists anymore for a minimization
amax(g) _ 2L¢/Lo(1— (84,0 + 0,m) + 8n,050,m) of the maximum temperature of the source. However it
"M\ Lo) 2nm~n? + m2 hqs_ bgen shown previously that an optimal thickness that
(nmLl,\ . (mmL, minimizes th_e average temperature of the source always
X sm( 7 >sm< i3 > exists (see Fig. 4).
0 0 It is due to the fact that the larger the Biot number
+ (80, = 81.00.m) sin(’mL"> (relative to the size of the source), the more one-dimensional
72n? Lo the local transfer at the center of the source (no spreading)
(81,0 — 8n,000,m) . (ML, where the temperature reaches its maximum. However heat
+ 72m2 S'”( Lo > (31) transfer in the neighborhood of the lateral sides of the source
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Fig. 6. (a) Temperature field C) on the upper face of the spreader after optimizing the thickness of the spreader and the location of the sources. (b) Temperature
field (°C) on the upper face of the spreader, after optimizing the thickness of the spreader, its shape and the location of the sources.

keeps its three-dimensional character (spreading), whichshown in Fig. 6(a). The solution is not unique because of the

explains why the average temperature of the source longergeometry symmetries. The result presented here has required

takes advantage of the spreading of the flux lines. 15 seconds of calculation for a 700 Mhz PC, choosing the
initial parameter values:

2.3. Optimization of a heat spreader for three sources [e=5mm x1=xp=x3=yi=y2=y3=20mm (33)
Let us now consider the problem of the cooling of three 1he result of the optimization is:

sources (square base) of 1%ar(_ea each dissipatinga 100 W [e=6,9: x1 =243 xp=5,0; x3=3L10;

uniform flux. A square heat sink of & 5= 25 cn? area

is used. Its lower face is subjected to a uniform convective Y1 =3%0: y2=15.7: y3=19,0] (mm) (34)

heat transfer coefficierit = 5000 Wm~2.K~1 (see [9] for Optimized locations of the sources are symmetrical with

considering a non-uniform heat transfer coefficient). The respect to the spreader diagonal. If this property had been

geometry is shown in Fig. 3 wittP = 3. The objective  taken into account from start, the number of parameters to

function is the maximal temperature of the upper face of be calculated would have been reduced to three.

the heat spreader, and it is desired to optimize the location  Now, if it is desired to optimize the shape of the spreader,

of the sourced([x,, y,]) as well as the thickness of the imposing a constraint on its base surface aleax L, =

spreader ). So the problem requires an optimization in a 25 cn?). The problem requiresine parameters with a non-

seven parameters domain. linear constraint. The optimal geometry shown in Fig. 6(b)
Direct application of the method described in Section 2.1 requires about two minutes of calculation to be obtained.

is conjugated with a minimization algorithm of the type of a It corresponds toL, = 3L,: each source is located at

sequential quadratic method (use of the functioimcon [8] the center of a square whose surface area is the third

in Matlab®), which performs global minimization, without of the whole surface area. This obvious result validates

analytical calculation of the gradient. It yields the result the method and underlines the good performance of the
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thermal quadrupole method for resolving such types of heat sink replacing the DBC. The corresponding optimal

multiparameters optimization problems. thickness is also plotted in Fig. 8(a). We can notice for this
classical example that replacing the DBC and the die by a
uniform flux density boundary condition does not change

3. Caseof a pyramidal heat spreader the optimal thickness much. Even if the flux density at the
heat sink/DBC interface is not uniform—see Fig. 9, results

In a more general way, the precedent study can be easilyon the optimal thickness stay roughly valid for this particular

generalized to the case of multilayer heat spreaders, thebut common example.

thermal quadrupole method being able to deal with this  Thus, the preceding studies and abaci can be used to

kind of structures. The expression of the temperature of design a heat sink for a component whose the structure is

the sources stays explicit [7] when the layers have the unknown, as a first approximation.

same lateral lengths and becomes semi-analytical [9] when

the stack is pyramidal (see the example shown in Fig. 7).

For this last case, no analytical value for the temperature 25, 2)

and its gradient can be easily found, but the quickness of 5 S p—" 60 ° °°
calculus allowed by the thermal quadrupole method allows = 2°f S Enalelayer modeling bo®’
the optimization. For example, let us consider the pyramidal £ | o °
structure shown in Fig. 7. All the layers are square, the ° 60
DBC (direct bounded copper) of 7.5 mm side is composed 101 0 © ® °
of two 0.3 mm thick coppeti = 380 Wm~1.K~1) layers 5l ot
separated by an inner 1 mm thick AIN (Aluminum nitride: oo * LiL
A =170 Wm~L.K1) layer. The 5 mm length die is 0 : : ' : o, D¢
assumed to be isothermal in its thickness direction and is 2 : 4 > ° !
modeled by a source of 200 82 uniform flux density.
A uniform convective heat transfer coefficieltequal to 4001 b)
3000 Wm?.K~1 is considered on the lower face with a &)
cooling fluid temperature of ©C. The heat sink base whose — 300} : :
thickness has to be optimized is made of copper. E P [ o pyramidal modeling

The thermal quadrupole method in the case of a pyra- 5 200t ©
midal structure [9] allows to calculate the maximum tem- - © o
perature of the die. The minimization method is based ona 100t 5, R
SQP method (Sequential Quadratic Programming), without “Pooocoovocooooo0o
taking into account any analytical values for the maximum 0] 5 3 y : : 5
temperature or for the maximum temperature gradient. So, Lo/ Lope

the optimal thickness of the heat sink can be plotted as a

function of its lateral lengths—see Fig. 8(a)—and the corre- Fig. 8. (a) Optimal thickness of the heat sink as a function of its lateral

sponding maximal temperature too, see Fig. 8(b). lengths, for a pyramidal modeling and its equivalent single layer modeling.
We have also made the corresponding optimization in (b) Maximum temperature of the die for an optimal thickness.

the case of a single-bloc spreader with the flux dissipated

by the die uniformly distributed on the upper face of the
x 10

¢ p llll

Cu

AIN

Base plate
(Cu)

Fig. 7. A typical pyramidal heat spreader. Fig. 9. Flux density on the lower face of the DBC b = 2L ppc -
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