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Abstract

This article deals with a design method for optimizing heat spreaders dedicated to electronic board cooling. The modeling is
the thermal quadrupole method which is an analytical exact and rapid method that can be implemented for suitable geometries. U
conditions, an optimal thickness can be found for the spreader (or the heat sink base). It correspond to a minimization of the ave
maximal temperature of the heat sources. This optimal thickness is given in an non-dimensional form by an abacus which can b
quantitative way to design heat spreaders or, in a more qualitative way, to assess the function and the performance of the spreade
of the sources on the heat spreader as well as the shape of the spreader are also optimized. Finally, the case of a pyramidal mu
spreader is considered in order to test the efficiency of the quadrupole method as a tool for modeling conductive heat transfer for op
applications.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

Cooling electronic devices [1,2] require the use of h
spreaders whose function is to allow the spreading of
flux lines in the 3D space and to increase the exchange
with the coolant. It is possible to model a spreader of
type shown in Fig. 1 by a sum of three thermal resistan
(Rd, Rc andRf ) characterizing the non-disturbed spread
the constriction of the flux lines and the convective trans
with the coolant respectively:

Rt =Rd +Rc +Rf (1)

Rd = e

λL2
0

, Rf = 1

hL2
0

(in the case of Fig. 1) (2

the total resistance being defined with respect to a t
perature difference between the average temperature o
source and the temperature of the coolant (which is set
at 0 ◦C). The calculation of the constriction resistanceRc
can be done using different correlations found in the lite
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E-mail address: gmaranza@ensem.inpl-nancy.fr (G. Maranzana).
1290-0729/$ – see front matter 2003 Elsevier SAS. All rights reserved.
doi:10.1016/S1290-0729(03)00107-8
e

ture. For example Degiovanni et al. [3,7] suggest, for th
spreaders:

Rc = 8

3π3/2λLe

(
1− 1.288

Le

L0
+ 0.288

(
Le

L0

)3.75)
(3)

Under the same conditions, Negus et al. [4] propose:

Rc = 0.475− 0.62Le/L0 + 0.13(Le/L0)
2

λLe
(4)

These correlations have been determined using cylind
geometries but stay also valid in the case where the so
and the spreader have nearly square bases. These resis
are defined with respect to the average temperature o
excited surface, considering a uniform excitation flux. T
type of correlation is only valid for a thick heat spread
whose thickness is of the same order of magnitude as its
eral lengths because they do not take into account the
change with the coolant. These constriction resistance
not intrinsic to the spreader, they also depend on the con
tive transfer, or more globally on the boundary conditio
In fact, it is observed that the lower the convective trans
the more significant the spreading of the flux lines.

In practice, spreaders are generally not thick eno
for considering constriction resistances independent of
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Nomenclature

Be Biot number relative to the spreader thickness
(Be)opt optimal Biot number relative to the spreader

thickness
BLe Biot number relative to the source size
BL0 Biot number relative to the spreader lateral

dimensions
e thickness of the spreader
h heat transfer coefficient
Lxe source length in thex-direction
L
y
e source length in they-direction

Lx0 spreader length (x-direction)
L
y
0 spreader length (y-direction)

Rc constriction resistance
Rd non-disturbed spreader resistance
Rf convective heat transfer resistance
Rt total resistance

T temperature
T1D temperature without spreader
xp, yp location of thep-th source
αn x-eigenvalue of ordern
βm y-eigenvalue of orderm
γn,m =√

α2
n + β2

m

θn,m harmonic of temperature, of order(n,m)
φn,m harmonic of flux density, of order(n,m)
λ conductivity of the spreader
Ω,Ψ functions
ϕ flux density dissipated by the source

Subscripts or superscripts

p relative to source numberp
max relative to the maximal temperature
ave relative to the average temperature
opt optimal value
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boundary conditions, so Yovanovich and Antonetti [5] ha
established an abacus giving the constriction resistanc
a spreader of such a thickness with an imposed temper
on the exchange surface. Song et al. [6] propose a correl
that integrates the convective coefficient and the thicknes
the spreader as well:

Rc = (1−Le/L0)
3/2

2λLe

× (λ/h)(π3/2/L0 + 1/Le)+ tanh((π3/2/L0 + 1/Le)e)

1+ λ
h
(π3/2/L0 + 1/Le) tanh((π3/2/L0 + 1/Le)e)

(5)

According to its authors, this correlation is valid in almo
all the common applications in electronics with a 10
maximum error. One can notice that resistanceRc is a
decreasing function of the thickness of the spreader.

The total resistance of the spreader shown in Fig
is plotted versus its shape ratio for the different corre
tions as well as the exact model defined further in
article (Eq. (21)) in Fig. 2(h = 1000 W·m−2·K−1, λ =

Fig. 1. Single layer square base spreader.
r
e

400 W·m−1·K−1, L0 = 100 mm,Le = 20 mm). Degiovan-
ni’s and Negus’ correlation give the same results which
valid for this particular example where the thickness is lar
than the half of the lateral length of the spreader. Song’s
relation is valid on the whole thickness domain within a c
tain accuracy. We can already remark that an optimal th
ness that minimizes the total thermal resistance exists.

This article displays a methodology for calculating t
optimal dimensions of a spreader. It is aimed at answ
ing the following question: knowing the dimensions
the sources, the dissipated power, the conductivity of
spreader material, as well as the convection coefficient, w

Fig. 2. Total thermal resistance of the system as a function of the thick
of the spreader, using different correlations for the constriction resist
and an exact method.
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are the dimensions of the spreader and the locations o
sources that minimize their temperatures?

As shown in the preceding example, an optimum ex
for the thickness of the spreader. But an optimum does
exist for its base surface area because the larger its v
the larger the exchange surface and the more importan
spreading of the flux lines. So, an extra criterion should
introduced, to determine this area. It could be the maxi
allowable temperature of the source.

2. Case of a single layer heat spreader

2.1. General case

Let us consider a single layer heat spreader whose
is the cooling of a set ofP sources as shown in Fig. 3. I
lateral lengths are calledLx0 andLy0, its thicknesse and its
conductivityλ. The lower face of the spreader is submitt
to a uniform convective heat transfer coefficienth and the
lateral faces are insulated. Each source numberp, of lengths
Lxp andLyp in thex andy-directions respectively dissipate
a known flux densityϕp(x, y) on its heating surface.

Any increase in the thickness of the spreader yield
better spreading of the flux lines (a decrease ofRc) but
also leads to a simultaneous increase in the non-distu
resistance of the heat spreader(Rd = e/λLx0L

y
0). So, an

optimal thickness that minimizes the temperature of
sources, clearly exists. As in the previous single sou
case, no optimum on the lateral dimensions of the spre
(L

y

0,L
x
0) exists. However, if the base surface areaL

y

0 × Lx0
is fixed, an optimum exists for the shape of the sprea
that is to say for theLy0/L

x
0 ratio. In this latter case on

or several optima can be found for the locations of
sources([xp, yp]).

Thus, the aim of this section is to optimize the thickn
of the spreader(e), its shape(Ly0/L

x
0) and the locations

of the sources([xp, yp]) as a function of some contro
parameters which are the spreader base surface area(L

y

0 ×
Lx0), the dissipated flux densities(ϕp(x, y)), the convective
heat transfer coefficient(h), and the conductivity (λ) of the
material the spreader is made out of.

Fig. 3. Single layer spreader: general case.
,

r

The thermal quadrupole method [7] (based on inte
transforms and on the method of separation of variab
yields the analytical expression of temperatureT of the
upper face of the spreader as a function of the imposed
density.

For steady state conditions, the Fourier-cosine transf
of the temperatureT is written:

θ0,0 =
(
e

λ
+ 1

h

)
φ0,0 (6)

θn,m = 1

h

1+ (h/λγn,m) tanh(γn,me)

1+ (λγn,m/h) tanh(γn,me)
φn,m

for (n,m) 
= (0,0) (7)

whereθn,m andφn,m are the Fourier-cosine transforms
temperatureT and of the flux densityϕ on the upper face o
the spreader(z= e):

θn,m =
Lx0∫
0

L
y

0∫
0

T (x, y, z= e)cos(αnx)cos(βmy)dy dx

φn,m =
Lx0∫
0

L
y
0∫

0

ϕ(x, y, z= e)cos(αnx)cos(βmy)dy dx (8)

with

αn = nπ

Lx0
, βm = mπ

L
y
0

, γn,m =
√
α2
n + β2

m (9)

So, the spectrum of the imposed flux density on the up
face of the spreader is given by:

φn,m =
P∑
p=1

xp+Lxp∫
xp

yp+Lyp∫
yp

ϕp(x, y)cos(αnx)cos(βmy)dy dx

(10)

As a result, the analytical value of the temperature spect
on the upper face of the spreader can be calculated. Kno
this analytical spectrum, the real value of temperature
be found using either a fast Fourier inverse transform
keeping the analytical character of the method:

T (x, y, z= e)= θ0,0

Lx0L
y

0

+ 2

Lx0L
y

0

N∑
n=0

M∑
m=0

(2− δn,0 − δ0,m)

× cos(αnx)cos(βmy)θn,m (11)

whereN andM are the truncation orders, in thex- and
y-directions of the Fourier series (chosen according to
spatial resolution desired [9]), andδ the Kronecker symbol
δi,j = 1 if i = j andδi,j = 0 if i 
= j .

If we make the assumption that the sources are isothe
in the thickness direction, two natural objective functio
can be introduced: the maximum of the average tempera
of the sources and the maximum local temperature:
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Tave= max
p

(
1

LxpL
y
p

xp+Lxp∫
xp

yp+Lyp∫
yp

T (x, y, e)dx dy

)

or Tmax= max
x,y

(
T (x, y, e)

)
(12)

We choose here to keep the analytical character of
method in order to get an analytical expression for
objective function and for its gradient, which allows the u
of an efficient minimization method.

2.2. Particular cases

The aim of this section is to allow a functional analysis
the heat spreader by considering some basic examples.

2.2.1. Design of a heat spreader for a single source
Here, we introduce a procedure for an optimal des

of a heat spreader used to cool a square base heat s
(Lxe = L

y
e = Le) that dissipates a uniform heat flux (ca

of Fig. 1). The optimal location of the source is of cou
the center of the spreader. According to the symmetry, o
the quarter of the structure requires to be modeled
the optimal shape of the spreader being square the op
length ratior = LY0 /L

x
0 is equal to unity(Lx0 = L

y
0 = L0).

The size of the sourceLe, the uniform dissipated fluxϕ,
the convective transfer coefficienth and the conductivity o
the spreaderλ are assumed to be known. In this problem
optimization concerns only one variable, the thickness of
spreader(e), the adjustment parameter being the area of
lower face(L0). Let us calculate first the objective functio

The first step is to calculate the flux density spectr
imposed on the upper face of the spreader using Eq. (10

φn,m = ϕ

Le/2∫
0

Le/2∫
0

cos(2αnx)cos(2βmy)dy dx (13)

since only the quarter of the structure is modeled. (L0 and
Le are replaced byL0/2 andLe/2 here.) So,

φ0,0 = ϕ

(
Le

2

)2

(14)

φ 0,m
(m�1)

= ϕ
Le

2

sin(βmLe)

2βm

φ n,0
(n�1)

= ϕ
Le

2

sin(αnLe)

2αn

φ n,m
(n,m�1)

= ϕ
sin(αnLe)

2αn

sin(βmLe)

2βm
(15)

The two objective functions (12) can be considered (m
imization of the average or of the maximum local sou
temperature):

Tave= 4

L2
e

Le/2∫
0

Le/2∫
0

T (x, y, e)dy dx or

Tmax= max
(
T (x, y, e)

)
(16)
x,y�Le/2
e

l

The objective function is the average temperature of the
source

Eqs. (6), (7), (11) and (14)–(16) yield:

Tave= ϕL2
e

L2
0

(
e

λ
+ 1

h

)
+ ϕLe

λ

N∑
n=0

M∑
m=0

aave
n,m

× 2λγn,m/h+ tanh(2γn,me)

1+ (2λγn,m/h) tanh(2γn,me)
(17)

with

aave
n,m(Le/L0)

= L0

π3Le

[
2L2

0/L
2
e(1− (δn,0 + δ0,m)+ δn,0δ0,m)

n2m2π2
√
n2 +m2

×sin2
(
nπ

Le

L0

)
sin2

(
mπ

Le

L0

)

+ (δ0,m − δn,0δ0,m)

n3 sin2
(
nπ

Le

L0

)

+ (δn,0 − δn,0δ0,m)

m3
sin2

(
mπ

Le

L0

)]
(18)

Remark. The equivalent total thermal resistance of
system is:

Rt = Tave

ϕL2
e

(Tfluid = 0) (19)

So, if the resistances of the non-disturbed spreader an
the convective transfer are subtracted from the constric
resistance, the following result is obtained:

Rc =Rt − 1

hL2
0

− e

λL2
0

(20)

Comparing Eqs. (17), (18) and (20) yields:

Rc(h,λ,Le,L0)= 1

λLe

∞∑
n=0

∞∑
m=0

aave
n,m

× 2λγn,m/h+ tanh(2γn,me)

1+ (2λγn,m/h) tanh(2γn,me)
(21)

which is the exact analytical expression of the constric
resistance (based on the average temperature). Its app
mation is Song’s correlation (5). This resistance always
pends on the convective heat transfer coefficient, which
firms that the constriction resistance is not an intrinsic pr
erty of the spreader since it depends on the boundary co
tions(h). When the thickness of the spreader becomes l
enough when compared with its lateral lengths (Degiov
ni’s [3] and Negus’ [4] assumption), the tanh(2γn,me) terms
(in (21)) go to unity, and the constriction resistanceRc does
not depend on the convective coefficient anymore:

Rc(λ,Le,L0)= 1

λLe

∞∑
n=0

∞∑
m=0

aave
n,m

(
Le

L0

)
(22)

In order to provide a more general character to this stu
the objective function can be given a non-dimensional fo
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The aim of the spreader is to reduce the temperature
respect to a reference configuration where heat transf
one-dimensional. So the maximum temperature the so
can reach corresponds to a cooling without spreader:

T1D = ϕ

h
(23)

The objective function is normalized with this quantity:

T ∗
ave= Tave

T1D
(24)

The non-dimensional parameters of the optimizat
problems are introduced in (17), (18), (23), (24) with:

• BL0 = hL0/(2λ): the Biot number relative to the later
lengths of the spreader.

• Be = he/(2λ): the Biot number relative to the thickne
of the spreader.

• BLe = hLe/(2λ): the Biot number relative to size of th
source.

So the objective function depends on three parame
and can be written under a functional form:

T ∗
ave=Ωave

(
L0

Le
,BLe,Be

)
(25)

Using a symbolic calculus software of the Maple® typ
the analytical value of the gradient of the objective funct
(∂T ∗

ave/∂Be) can be determined and an efficient minimiz
tion method can be implemented to calculate the opti
Biot number relative to thickness(Be)opt for different val-
ues ofBLe andL0/Le.

The results are presented under the form of an ab
allowing the optimal choice of the thickness of the spread
see Fig 4(a). This abacus can be represented by a fun
Ψave:

∂Ωave

∂Be

(
L0

Le
,BLe, (Be)opt

)
= 0 (26)

or

(Be)opt = Ψave

(
L0

Le
,BLe

)
(27)

The average non-dimensional temperature for this o
mal thickness can also be calculated to allow the choic
the lateral lengths of the spreader to get an optimum for
spreader dimensions: see Fig. 4(b). This abacus can be
resented by a functionΩopt

ave:

hT
opt
ave

ϕ
=Ωave

(
L0

Le
,BLe, (Be)opt

)
=Ω

opt
ave

(
L0

Le
,BLe

)
(28)

whereΩave is defined by Eq. (25).
So, abacus 4(b) yield the lateral lengths of the spread

a function of the maximum allowable average tempera
while abacus 4(a) yield the corresponding optimal thickn
-

Fig. 4. (a) Optimal non-dimensional thickness(he/λ) that minimizes the
average temperature of the source as a function of the non-dimens
length of the source(hLe/λ) and of the length ratio(L0/Le): func-
tion Ψave. (b) Non-dimensional average temperature for an opti
non-dimensional thickness: functionΩopt

ave.

Interpretations. Even if the underlying interpretations a
related to the particular case of the cooling of a single so
by a single-layer spreader, they can be extended to m
general cases in a qualitative way.

• The non-dimensional optimal thickness of a spreade
an increasing function of its non-dimensional lateral leng
see Fig. 4(a) (progression along a horizontal line,BLe beeing
kept constant). However this function reaches a plat
where an increase of the spreader lateral lengths h
low impact on the source temperature (see Fig. 4(b)). T
plateau is reached for low spreader dimensions if the
number relative to the size of the source(BLe = hLe/2λ)
is large. As a consequence, there exists a lateral leng
the spreader, or exchange surface, that is not interestin
exceed.
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• For a fixed value of theL0/Le ratio, an increase o
Biot numberBLe (or BL0) leads first to an increase of th
optimal thickness(Be)opt which correspond to a spreadin
of the flux lines. This increase in(Be)opt is followed then
by a decrease until it reaches a zero value (see Fig.
progression along a vertical line). This behavior is explai
now. The optimal thickness can not increase indefini
because the resistance of the non-disturbed spreadeRd
would become too important. This optimal thickness be
limited, the larger the Biot numbersBLe (or BL0), the
more one-dimensional the heat transfer, particularly at
center of the source. At that point it can be said t
heat transfer becomelocally one-dimensional. According t
this, a spreader is not required in this type of locally o
dimensional situation.

The non-dimensional optimal thickness of a heat spre
is not a strictly increasing function of the non-dimensio
size of the source; above a given Biot number (relative to
size of the source) it is better to decrease the thickness o
spreader than to increase it. If the exchange(h) is very good,
the optimal thickness may be equal to zero, so it is better
to use any spreader.

• For all cases, the optimal Biot number relative to
thickness is lower than unity, so it would be a nonse
to design a spreader whose Biot number(he/λ) would be
higher than one.

The objective function is the maximal temperature of the
source

This type of objective function is less used than the pr
ous one because its value can not be experimentally obta
by an electric measurement. Nevertheless, it correspon
the maximal temperature (hot point) which is responsible
components break down.

Tmax= max
x,y�L0/2

(
T (x, y, z= e)

)= T (0,0, e) (29)

since temperature is maximal at the center of the source
is to say at (x = 0, y = 0) when only one quarter of th
structure is modelled.

The constriction resistance, based on the maximal t
perature becomes:

Rc = 1

λLe

∞∑
n=0

∞∑
m=0

amaxn,m

2λγn,m/h+ tanh(2γn,me)

1+ (2λγn,m/h) tanh(2γn,me)
(30)

with

amax
n,m

(
Le

L0

)
= 2Le/L0(1− (δn,0 + δ0,m)+ δn,0δ0,m)

π2nm
√
n2 +m2

× sin

(
nπLe

L0

)
sin

(
mπLe

L0

)

+ (δ0,m − δn,0δ0,m)

π2n2 sin

(
nπLe

L0

)

+ (δn,0 − δn,0δ0,m)

2 2
sin

(
mπLe

)
(31)
π m L0
,

d

t

Fig. 5. (a) Optimal non-dimensional thickness(he/λ) that minimizes the
maximum temperature of the source as a function of the non-dimens
length of the source(hLe/λ) and of the length ratio(L0/Le): func-
tion Ψmax. (b) Non-dimensional maximum temperature for an optim
non-dimensional thickness: functionΩopt

max.

In the same way as previously, the non-dimensional ob
tive function is written as a function of three variables:

T ∗
max=Ωmax

(
L0

Le
,Be,BLe

)
(32)

The corresponding abacus are drawn in Fig. 5. Above a
number relative to the size of the source (BLe) equal to
1.3 no optimal thickness exists anymore for a minimizat
of the maximum temperature of the source. Howeve
has been shown previously that an optimal thickness
minimizes the average temperature of the source alw
exists (see Fig. 4).

It is due to the fact that the larger the Biot numb
(relative to the size of the source), the more one-dimensi
the local transfer at the center of the source (no spread
where the temperature reaches its maximum. However
transfer in the neighborhood of the lateral sides of the so
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mperature
Fig. 6. (a) Temperature field (◦C) on the upper face of the spreader after optimizing the thickness of the spreader and the location of the sources. (b) Te
field (◦C) on the upper face of the spreader, after optimizing the thickness of the spreader, its shape and the location of the sources.
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keeps its three-dimensional character (spreading), w
explains why the average temperature of the source lo
takes advantage of the spreading of the flux lines.

2.3. Optimization of a heat spreader for three sources

Let us now consider the problem of the cooling of th
sources (square base) of 1 cm2 area each dissipating a 100
uniform flux. A square heat sink of 5× 5 = 25 cm2 area
is used. Its lower face is subjected to a uniform convec
heat transfer coefficienth = 5000 W·m−2·K−1 (see [9] for
considering a non-uniform heat transfer coefficient). T
geometry is shown in Fig. 3 withP = 3. The objective
function is the maximal temperature of the upper face
the heat spreader, and it is desired to optimize the loca
of the sources([xp, yp]) as well as the thickness of th
spreader (e). So the problem requires an optimization in
seven parameters domain.

Direct application of the method described in Section
is conjugated with a minimization algorithm of the type o
sequential quadratic method (use of the functionfmincon [8]
in Matlab®), which performs global minimization, witho
analytical calculation of the gradient. It yields the res
r
shown in Fig. 6(a). The solution is not unique because of
geometry symmetries. The result presented here has req
15 seconds of calculation for a 700 Mhz PC, choosing
initial parameter values:

[e= 5 mm; x1 = x2 = x3 = y1 = y2 = y3 = 20 mm] (33)

The result of the optimization is:

[e= 6,9; x1 = 24,3; x2 = 5,0; x3 = 31.0;
y1 = 35,0; y2 = 15,7; y3 = 9,0] (mm) (34)

Optimized locations of the sources are symmetrical w
respect to the spreader diagonal. If this property had b
taken into account from start, the number of parameter
be calculated would have been reduced to three.

Now, if it is desired to optimize the shape of the sprea
imposing a constraint on its base surface area(Lx × Ly =
25 cm2). The problem requiresnine parameters with a non
linear constraint. The optimal geometry shown in Fig. 6
requires about two minutes of calculation to be obtain
It corresponds toLx = 3Ly : each source is located
the center of a square whose surface area is the
of the whole surface area. This obvious result valida
the method and underlines the good performance of
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thermal quadrupole method for resolving such types
multiparameters optimization problems.

3. Case of a pyramidal heat spreader

In a more general way, the precedent study can be e
generalized to the case of multilayer heat spreaders
thermal quadrupole method being able to deal with
kind of structures. The expression of the temperature
the sources stays explicit [7] when the layers have
same lateral lengths and becomes semi-analytical [9] w
the stack is pyramidal (see the example shown in Fig.
For this last case, no analytical value for the tempera
and its gradient can be easily found, but the quicknes
calculus allowed by the thermal quadrupole method allo
the optimization. For example, let us consider the pyram
structure shown in Fig. 7. All the layers are square,
DBC (direct bounded copper) of 7.5 mm side is compo
of two 0.3 mm thick copper(λ = 380 W·m−1·K−1) layers
separated by an inner 1 mm thick AlN (Aluminum nitrid
λ = 170 W·m−1·K−1) layer. The 5 mm length die i
assumed to be isothermal in its thickness direction an
modeled by a source of 200 W·cm−2 uniform flux density.
A uniform convective heat transfer coefficienth equal to
3000 W·m2·K−1 is considered on the lower face with
cooling fluid temperature of 0◦C. The heat sink base whos
thickness has to be optimized is made of copper.

The thermal quadrupole method in the case of a p
midal structure [9] allows to calculate the maximum te
perature of the die. The minimization method is based o
SQP method (Sequential Quadratic Programming), with
taking into account any analytical values for the maxim
temperature or for the maximum temperature gradient.
the optimal thickness of the heat sink can be plotted a
function of its lateral lengths—see Fig. 8(a)—and the co
sponding maximal temperature too, see Fig. 8(b).

We have also made the corresponding optimization
the case of a single-bloc spreader with the flux dissipa
by the die uniformly distributed on the upper face of t

Fig. 7. A typical pyramidal heat spreader.
heat sink replacing the DBC. The corresponding opti
thickness is also plotted in Fig. 8(a). We can notice for
classical example that replacing the DBC and the die b
uniform flux density boundary condition does not chan
the optimal thickness much. Even if the flux density at
heat sink/DBC interface is not uniform—see Fig. 9, res
on the optimal thickness stay roughly valid for this particu
but common example.

Thus, the preceding studies and abaci can be use
design a heat sink for a component whose the structu
unknown, as a first approximation.

Fig. 8. (a) Optimal thickness of the heat sink as a function of its lat
lengths, for a pyramidal modeling and its equivalent single layer mode
(b) Maximum temperature of the die for an optimal thickness.

Fig. 9. Flux density on the lower face of the DBC forL0 = 2LDBC .
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One can notice here that the sensitivity of the maxim
temperature to the lateral lengths of the heat sink at
optimum thickness is very high when the exchange sur
area is low. In fact, the qualitative interpretations are
same in the pyramidal case and in the single layer spre
case.

4. Conclusion

The optimal design of heat spreaders for electronics c
ing implies the knowledge of the working conditions (d
sipated power distribution, convective heat transfer co
cient) as well as the internal geometry of the system. If
lateral lengths of the spreader are fixed, an optimal thick
that minimizes the maximal or average temperature exis
usual working conditions. Abaci that permit the optimal d
sign of a single layer heat spreader have been construct

The assumption of uniform flux density on the compon
base plate allows, as a first approximation, to choose
quasi-optimal thickness of an heat sink base whose la
lengths are known.

The thermal quadrupole method is well suited to ther
optimization of electronic components. Very short proce
ing times allow a design optimization which does not requ
the use of reduced models that may lead to bias becau
oversimplification of the transfer problem. The method
limited to linear problems (there are some exceptions) an
structures made of stacks of parallelepipedic blocks. Fu
prospects will concern the optimization of heat exchang
by coupling the conductive model with a convective one.
r

l

f
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